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Introduction

Adapteva Epiphany Coprocessor
New scalable many-core architecture
Energy efficient platform (50 GFLOPS/Watt)
$99 for a Parallella board

Contributions
Explored features of the Epiphany
Evaluated the performance
Demonstrated how to write high performance applications
on this platform
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Parallella Board
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Epiphany Coprocessor

Features

Multi-core MIMD
architecture

No cache

32 KB of local SRAM in
four banks of 8 KB

Shared address space

64 General purpose
registers

Epiphany Instruction set

Superscalar CPU - two
floating point operations
(Fused Multiply-Add) and
one 64-bit memory
load/store operation
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Software Environment

Programming Environment
C/C++
Epiphany SDK

Programming Considerations
Memory Size

Relatively small 32 KB of local RAM per eCore (for storing
both code and data)
Store code and data in different local memory banks
Distribute code between multiple cores

Processor Capability
Currently no hardware support for integer multiply, floating
point divide or double-precision floating point operations
Branching costs 3 cycles. Unroll inner loops to increase
performance
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Experiment Platform

ZedBoard evaluation module with Zynq SoC
Daughter card with Epiphany-IV 64-core (E64G401)
Dual core ARM Cortex-A9 host at 667 MHz
Epiphany eCores at 600 MHz
512 MB of DDR3 RAM on the host
32 MB shared with eCores
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Bandwidth

Experiment: To evaluate cost of sending messages from one
eCore to another
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Latency

Latency for small message transfers
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Latency

Experiment: To evaluate the effect of Node distance on Transfer
Latency

Node 1 Node 2 Distance Time per transfer (nsec)
0,0 0,1 1 11.12
0,0 0,2 2 11.14
0,0 1,2 3 11.19
0,0 0,4 4 11.38
0,0 3,3 5 11.62
0,0 4,4 6 11.86
0,0 7,7 14 12.57

80 bytes are transferred from one eCore to another
≈ 7 cycles per transfer
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Shared Memory Access

Experiment: To evaluate the performance of the external
shared memory, multiple nodes write to the shared memory
simultaneously. Each eCore continuously writes blocks of 2
KBytes over 2 seconds and the utilization is measured

Node (Total No) Iterations Utilization

2 * 2 nodes

0,0 61037 0.41
0,1 48829 0.33
1,0 24414 0.17
1,1 12207 0.08

8 * 8 nodes

0,7 1,7 2,7 3,7 27460+ 0.187 each
(8) 3050+ 0.021 each
(4) 2040+ 0.014 each
(8) 100 - 1000
(9) 10 - 100
(7) 1 - 10

(24) 0

Nodes closer to
column 7 and row 0
get the best write
access

Write throughput of
150 MB/sec
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Heat Stencil Equation

Five-point star-shaped stencil

Tnewi,j = w1 ∗ Tprevi,j+1 + w2 ∗ Tprevi,j

+ w3 ∗ Tprevi,j−1 + w4 ∗ Tprevi+1,j

+ w5 ∗ Tprevi−1,j
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Implementation

Hand-tuned unrolled assembly code
“In-place” implementation
Size of grid limited by local memory (and size of assembly
code)
All 64 registers used and managed carefully
Grid initialized in the host and transferred to each eCore
Computation followed by communication phase in each
iteration
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Computation Phase

Grid sizes of 20 × X.
Width of 20 decided
based on register
availability

Buffer 2 rows of grid
points into registers and
perform FMADDs

Continuous runs of Fused
Multiply-Add (FMADD)
interleaved with 64-bit
load/store

5 grid points accumulated
at a time

Each grid point loaded
into register only once



Introduction Architecture Performance Experiments Heat Stencil Conclusions

Communication Phase

Synchronization between
neighbouring eCores

Transfers started after
neighbour’s computation
phase

DMA for boundary
transfers
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Floating point performance

Single-core Floating point performance in GFLOPS

Stencil evaluated for 50
iterations.

81-95% of peak
performance
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Floating point performance

64-core Floating point performance in GFLOPS

*Lighter colors show performance without communication

83% of peak performance
with communication
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Weak Scaling

Weak Scaling - Number of eCores vs Time

Number of eCores from 1
to 64

Vary problem size from 60
× 60 to 480 × 480
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Strong Scaling

Strong Scaling - Number of eCores vs Speedup

Number of eCores from 1
to 64

Problem size fixed
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Conclusions and Future Work

Heat Stencil running at 65 GFLOPS (83%)
≈ 32 GFLOPS/Watt assuming 2W power consumption
Double-buffering of boundary regions to overlap
computation and communication

Epiphany platform holds high potential for HPC
Considerable effort to extract high performance

Memory constraint important factor while designing
algorithms

Streaming algorithm to process higher grid sizes
Future version of Epiphany to have 4096 cores (70
GFLOPS/Watt)



Introduction Architecture Performance Experiments Heat Stencil Conclusions

Questions?
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